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This study involves the use of adaptive signal processing techniques to improve the sensitivity of contin-
uous wave electrically detected magnetic resonance. The approach should be of widespread utility in
continuous wave magnetic resonance experiments of all kinds. We utilize adaptive signal averaging to
expedite the averaging process usually performed in magnetic resonance experiments. We were capable
of reducing the noise variance in a single trace by a factor of 11.3 which is equivalent to reduction in time
by the same factor. This factor can be quite significant especially when signal averaging must be per-
formed over the span of many hours to days. This technique may also be tailored to conventional electron
spin resonance experiments and other techniques where signal averaging is utilized. The approach may
offer promise in the eventual development of spin based quantum computing.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

This paper describes a real time exponentially weighted recur-
sive least squares adaptive signal averaging technique which
greatly decreases the amount of time needed for signal averaging
of continuous wave magnetic resonance measurements. The tech-
nique provides a very low cost means to achieve a quite significant
improvement in signal to noise ratio and data acquisition time. The
technique is utilized in electrically detected magnetic resonance
(EDMR) via spin dependent recombination (SDR) [1,2] in individual
transistors [3,4]. However, the approach should be widely applica-
ble in continuous wave magnetic resonance measurements.

EDMR typically involves SDR. EDMR in general and SDR in par-
ticular are electron spin resonance (ESR) techniques [5] in which a
spin dependent change in current provides a very sensitive mea-
surement of paramagnetic defects. Without special application of
digital signal processing techniques, EDMR measurements involv-
ing SDR are about seven orders of magnitude more sensitive than
conventional ESR. The techniques are therefore particularly useful
in studies of imperfections in the semiconductor devices utilized in
integrated circuits. In such devices, the dimensions are quite small
and can have very low defect densities. SDR detected EDMR can be
utilized in fully processed devices such as metal oxide semiconduc-
tor field effect transistors (MOSFETs), bipolar junction transistors
(BJTs), and diodes [3,4]. With some additional improvements, the
technique’s very high sensitivity may make it potentially useful
ll rights reserved.
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for single spin detection and quantum computing. However, the
sensitivity EDMR is not currently high enough to detect a single
spin in the presence of the noise encountered with present day
EDMR spectrometers in a reasonable amount of time. The purpose
of this study is to improve the signal to noise ratio and thus the
rate of data acquisition in such sensitive EDMR measurements.

Continuous wave magnetic resonance typically utilizes a sinu-
soidal modulation of the applied magnetic field, thereby encoding
the signal in a sinusoid. The amplitude of the modulated signal is a
measure of the EDMR and therefore, a measure of the number of
defects within the device. A lock-in amplifier (LIA) is then used
to demodulate the amplitude modulated EDMR signal to DC, thus
exploiting the sensitivity enhancement available from the phase
and frequency detection. This widely used method effectively
attenuates much of the noise associated with the 1/f noise typically
observed with a DC current produced by the diode or transistor uti-
lized in the EDMR measurement. However, lock-in detection alone
is not always sufficient to achieve a reasonable signal-to-noise ra-
tio (SNR), so signal averaging is also often utilized. In very small de-
vices with very low defect densities, the EDMR signal to noise
ratios can be low. Therefore, extensive signal averaging may be re-
quired to achieve a reasonable SNR for the EDMR spectra.

Though work has been performed to remove noise observed in
related fields via software, such as nuclear magnetic resonance
(NMR) [8], not much has been done in any area of ESR including
EDMR. There are many things can be done to improve EDMR SNR
in terms of hardware such as proper grounding, minimizing cable
length to reduce stray capacitance, and utilizing low noise pream-
plifiers. However, the focus of this paper will be on the advance-
ments that we made in software.
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We performed our measurements on 4H SiC lateral n-channel
MOSFETs fabricated by Cree Corporation. These devices had a gate
area of 200 � 200 lm2 and a thickness of 500 Å. These devices re-
ceived a thermal ONO gate growth process. All EDMR measure-
ments were made with the sample at room temperature and
were performed with a fixed gate voltage. All EDMR spectra re-
ported here were taken with the magnetic field orientation parallel
to the SiC/oxide surface normal which is nearly parallel to the crys-
tal’s c-axis. EDMR measurements were made with a modulation
frequency of 1400 Hz and quite low modulation filed amplitude
(<0.1 G). The EDMR measurements were made on a custom built
EDMR spectrometer which utilizes a Resonance Instruments
8330 X-band bridge, TE102 cavity, and magnetic field controller, a
Varian E-line century 4 in. magnet, and power supply. We use a
Stanford Research Systems SR570 current preamplifier to prefilter
and amplify the device currents. We have implemented a virtual
lock-in amplifier using Labview (version 8.2) with the NI PCI
6259 M series DAQ card. This VLIA is just as good, if not better, than
any of the off the shelf commercial lock-in amplifiers. All software
is implemented in Labview and is run on a Dell Optiplex GX270
desktop computer with a 3.2 GHz processor and 1 GB of RAM.

Some of the noise sources that are associated with our EDMR
measurements include quantization noise, the ambient noise from
the surrounding hardware, and most importantly, the internal shot,
thermal, and flicker noise arising from within the device under
observation [6,7]. Fig. 1 illustrates the signal path in a typical EDMR
spectrometer and shows the types of noise introduced to the signal
as well as where it is added. The sampler represents the last contri-
bution of noise because noise cannot be added to the signal once it is
digitized. As mentioned earlier, we utilize a digital lock-in amplifier
which removes most of the preamp and ambient noise but adds
quantization noise (because it digitizes the signal before it is pro-
cessed). The noise due to sources internal to the device are not en-
tirely removed at the lock-in stage because this noise is to some
extent present at the modulation frequency and lock-in phase.
Therefore, it is the noise internal to the device that primarily deter-
mines the SNR at the output of the lock-in amplifier.

Fig. 2 illustrates current noise spectra from a MOSFETs config-
ured as a gate controlled diode for three different biasing conditions.
The top figure represents the condition with 0 V applied to the
Fig. 1. Signal path in our EDMR spectrometer illustrating the types of introduced as
well as the sources.

Fig. 2. Current noise spectra from a 4H SiC MOSFET configured in a gated controlled
diode biased with three different voltages.
source and drain of the MOSFET; the current flowing through the
device is thus essentially zero, therefore, this indicates that the
noise spectrum observed in this case is the noise generated by the
preamp. Note that this is more or less a white spectrum, meaning
that the noise variance at all frequencies is the same. The middle fig-
ure represents the condition in which a small forward bias is applied
to the source and drain of the MOSFET, yielding a dc current of
0.002 lA. The bottom figure illustrates a condition in which a large
forward bias is applies to the source and drain yielding a dc current
of 5 lA. This latter configuration corresponds to the biasing condi-
tion which results in maximum recombination and the operating
point of our EDMR experiments. Note that this spectrum is signifi-
cantly different than the other two. The reason for this is because
of the significant flicker and shot noise that is introduced with larger
dc currents [6]. This indicates that the dominating source of noise in
the EDMR experiment is due to flicker and shot noise and that the
noise from the preamp only becomes a problem when smaller de-
vices (smaller currents) are being used.

Initially, we attempted to reduce the noise observed in the
EMDR experiments with adaptive noise cancellation techniques
with a field programmable gate array (FPGA) before lock-in detec-
tion. The logic of processing EDMR signals before lock-in detection
was the hope that a better representation (ie: improved SNR) of the
amplitude modulated input signal would result in an improved
SNR signal at the output of the LIA. It turned out that only minimal
improvement was achieved because, as mentioned earlier, the
majority of the noise in the EDMR measurement arises from the
device under study and not the surrounding ambient noise. Also,
lock-in detection itself is an extremely effective means of removing
noise because it is not only frequency sensitive, but it is sensitive to
phase as well. Therefore, the only noise that contaminates the
post-lock-in EDMR signal is the noise with a frequency content
near that of the modulation frequency. As a result, we decided to
move our search to the output of the LIA for an effective way to en-
hance the sensitivity of EDMR.

In some cases, the devices under study have very few defects
which make signal acquisition very difficult and time consuming.
We have developed a way to expedite the averaging process by uti-
lizing the predictability of the autoregressive noise features at the
output of the LIA. (The time constant of the LIA determines the cor-
relation between successive samples and hence, the predictability).
We term this tool an adaptive signal averager (ASA) which utilizes
adaptive linear prediction as illustrated in Fig. 2. It works by using
the conventional scan average as the desired response in an adap-
tive linear prediction configuration. The linear predictor wn is a fi-
nite impulse response (FIR) filter of length pand the input to the
linear predictor is the tapped delayed noisy EDMR vector x(n) also
of length p, where n is the present time index. These vectors are
represented as column vectors which are indicated by the trans-
pose operators T. The input samples x(n) of the vector x(n) are com-
posed of the desired EDMR signal d(n) and an arbitrary noise
component u(n).

wn ¼ ½wnð1Þ;wnð2Þ; . . . ;wnðpÞ�T ð1Þ
xðnÞ ¼ ½xðn� 1Þ; xðn� 2Þ; . . . ; xðn� pÞ�T ð2Þ

The tapped delayed input vector x(n) is analogous to a shift register.
First, the vector is initialized to the first p samples of the EDMR sig-
nal. Then, when a new sample is acquired, the samples are shifted
to make room for the present sample. As a result, the oldest sample
is forced out of the input array. This shifting process is then contin-
ued until the end of the scan. The present sample of the tapped de-
layed input vector is represented by the term x(n � 1) which is
counterintuitive because this notation implies that it is the first past
sample. This notation is used because we are attempting to predict
the future sample d(n) based on past values of the noisy input sam-
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ples x(n � 1) to x(n � p). This is why this technique is termed linear
prediction. The prediction or estimate dest(n) of the desired signal is
simply computed by the inner product of these two vectors.

destðnÞ ¼ xTðnÞwn ð3Þ

The estimate is then subtracted from the scan average to form an
instantaneous error e(n) which is used in an algorithm to update
the weights of the FIR predictor.

eðnÞ ¼ dðnÞ � destðnÞ ð4Þ

There are many forms of adaptive filters but the two most widely
used and efficient are the least mean squares (LMS) and recursive
least squares (RLS) adaptive filters. These filters are advantageous
because they are capable of tracking non-stationary signals and
noise and neither algorithm requires an estimate of the signal or
noise statistics. This is desired for EDMR experiments because these
statistics differ significantly from device to device and vary over
time. The main advantage that the RLS algorithm has over the
LMS algorithm is that it has about an order of magnitude faster con-
vergence time, though, in most cases, the LMS algorithm is known
to have better tracking performance [9]. To increase the tracking
performance of the RLS algorithm, we utilized the exponentially
weighted RLS (EWRLS) algorithm by incorporating an exponentially
weighing factor k into the system. By doing this, the algorithm
effectively becomes more sensitive to changes in the noise environ-
ment. The exponential weighting factor k controls the memory of
the system and is chosen to be in the range 0 < k < 1. The EWRLS
algorithm becomes the RLS algorithm when k is chosen to be 1
which provides the system with infinite memory. This implementa-
tion is usually undesirable for EDMR measurements with moderate
to high SNR because the filtering performance is degraded. This is
because the correlation matrix cannot update fast enough when
transitioning from noise to signal and vise versa. Therefore, the
exponential weighting factor should be kept slightly less than one
for signals with moderate to high SNR (see Fig. 3).

The EWRLS algorithm attempts to minimize the exponentially
weighted sum of squared errors cost function which is given by
Eq. (5).

nðnÞ ¼
Xn

i¼0

kn�ijeðnÞj2 ð5Þ

In order to minimize this cost function, the gradient is taken with
respect to the weights of the FIR predictor and set equal to zero
which is given by Eq. (6).

rnðnÞ ¼ �
Xn

i¼0

kn�ixðiÞeðiÞ ¼ 0 ð6Þ

This resultant vector represents the direction of steepest decent on
the sum of squared error surface. Plugging in for the error and rear-
ranging yields the set of linear equations given in Eq. (7).
Fig. 3. Block diagram of the adaptive linear predictor using the EWRLS algorithm.
x(n) represents the input vector composed of samples x(n � 1) to x(n � p) and wn

represents the FIR predictor of length p. The predictor output dest(n) is subtracted
from the desired signal d(n) (the conventional average) to form an instantaneous
error e(n). This error, along with the input vector, is fed into the RLS algorithm to
update the weights of the filter so that a better prediction can occur when the next
sample is presented to the system.
Xn

i¼0

kn�ixðiÞxTðiÞ
" #

wn ¼
Xn

i¼0

kn�idðiÞxðiÞ ð7Þ

This result can be simplified by realizing that the terms in the brack-
ets on the left is the summation of exponentially weighted determin-
istic autocorrelation matrices Rx(n) of the input signal from time
index 0 < i < n and the right hand side is the summation of exponen-
tially weighted deterministic cross correlation vectors rdx(n) of the
desired signal and the input signal from time index 0 < i < n. With
this realization, Eq. (7) in matrix form is equivalent to Eq. (8).

RxðnÞwn ¼ rdxðnÞ ð8Þ

Therefore, the weight vector wn is found by multiplying the cross
correlation vector rdx(n) with the inverse correlation matrix
R�1

x ðnÞ. Calculation of this inverse is computationally intense so it
is not desirable to calculate it every time a new sample is presented
to the system. Therefore, one way to reduce the computational time
is to realize that Rx(n) and R�1

x ðnÞ can be solved recursively. It can be
easily shown that,

RxðnÞ ¼ kRxðn� 1Þ þ xðnÞxTðnÞ ð9Þ

Now that Rx(n) can be solved for in terms of Rx(n � 1), there needs to
be a way to compute the inverse of this matrix. This is called the ma-
trix inversion lemma. The inverse of the exponentially weighted
autocorrelation matrix in Eq. (9) can be solved using Woodbury’s
identity [9,10]. Woodbury’s identity states that matrix A of Eq. (10)
can be inverted with the relation shown in Eq. (11). This identity only
holds if A and B are positive-definite p-by-p matrices, D is a positive-
definite n-by-p matrix, and C is an p-by-n matrix. The relation is easily
shown by computing AA�1 = I, where I is the identity matrix.

A ¼ B�1 þ CD�1CT ð10Þ
A�1 ¼ B� BCðDþ CT BCÞ�1CT B ð11Þ

Note that the following derivation is for real valued data. The trans-
pose operations would be replaced with the hermitian operator for
imaginary valued data. Comparing Eqs. (10) and (11), it can be real-
ized that

A ¼ RxðnÞ ð12Þ
B�1 ¼ kRxðn� 1Þ ð13Þ
C ¼ xðnÞ ð14Þ
D ¼ 1 ð15Þ

Then, plugging Eqs. (12)–(15) into (11), the exponentially weighted
inverse autocorrelation matrix can be computed recursively as
follows.

R�1
x ðnÞ ¼ k�1R�1

x ðn� 1Þ þ k�2R�1
x ðn� 1ÞxðnÞxTðnÞR�1

x ðn� 1Þ
1þ k�1xTðnÞR�1

x ðn� 1ÞxðnÞ
ð16Þ

This equation is usually reduced into simpler form, as shown in Eq.
(17)

R�1
x ðnÞ ¼

1
k
½R�1

x ðn� 1Þ � gðnÞzTðnÞ� ð17Þ

where,

zðnÞ ¼ R�1
x ðn� 1ÞxðnÞ ð18Þ

gðnÞ ¼ 1
kþ xTðnÞzðnÞ zðnÞ ¼ R�1

x ðnÞxðnÞ ð19Þ

The next step is to solve for the weight update. As stated earlier, the
weight vector is found by multiplying the cross correlation vector
rdx(n) with the inverse correlation matrix R�1

x ðnÞ. To reduce compu-
tation, rdx(n) is solved recursively in a similar fashion to that of Rx(n)
and is shown below.
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rdxðnÞ ¼ krdxðn� 1Þ þ dðnÞxðnÞ ð20Þ

The weight vector is found by computing the product of the auto-
correlation matrix R�1

x ðnÞ obtained in Eq. (16) and the recursive
cross correlation vector rdx(n) formed by Eq. (21) and realizing that
R�1

x ðn� 1Þwn�1 ¼ rdxðn� 1Þ.

wn ¼ R�1
x ðnÞrdxðnÞ ¼ wn�1 þ gðnÞaðnÞ ð21Þ

where g(n) was defined previously and a(n) is the a priori error. The
priori error is the error that occurs when using the previous set of
filter coefficients wn and is shown below,

aðnÞ ¼ dðnÞ � xTðnÞwn�1 ð22Þ

It is easy to see that the computation has been reduced significantly
from the conventional LS algorithm because of the recursive nature
of the autocorrelation and cross correlation functions. R�1

x ðnÞ can be
initialized directly or by forming the matrix d�I, where d is a con-
stant called the regularization parameter and I is the identity ma-
trix. The initialization of d depends on the SNR of the signal under
observation and should be calculated with the following [9,13].

d ¼ r2
uð1� kÞa ð23Þ

where r2
u represents the noise variance of an individual EDMR scan,

k is the exponential weighting factor, and a is a constant to be
determined by the SNR of the EDMR scan. The parameter a should
be chosen to be 1 for SNR > 30 dB, �1 < a < 0 for SNR � 10 dB,
a < �1 for SNR < �10 dB [9,13].

In some cases, the RLS algorithm can become unstable due to its
mathematical formulation. This occurs when the inverse autocor-
relation matrix loses its symmetry property [9,11]. This can be
avoided simply by calculating the lower (or upper) triangle of the
inverse autocorrelation matrix and filling the upper (or lower) tri-
angle to preserve its symmetry property [9,12]. This technique is
attractive not only because it prevents instability, but it also re-
duces computation. We utilized this method because we initially
encountered instability problems.

As mentioned earlier, the ASA filters each incoming EDMR scan in
real time via the EWRLS algorithm. The conventional average is used
as the desired signal in the algorithm and can be thought of as an
approximate guide for the filter to follow. Therefore, the filter allows
the noise that it sees to pass, but it effectively reduces the variance of
it thereby acting as a low pass filter with a time constant propor-
tional to (1 � k)�1 [9]. It is important to note that even though this
adaptive filter may have a similar Fourier transform compared to
that of a conventional low pass filter, it differs in many ways. A con-
ventional low pass filter simply does not allow the input signal to
pass any frequency greater than the cutoff frequency of the filter.
The adaptive filter also acts as a frequency blocker but differs from
a low pass filter because its weights are adapted so as to minimize
the error between the desired signal and its prediction. As result,
adaptive filters are capable of limiting the variance of the input sig-
nal relative to the desired signal. The filter only allows the variance of
the input signal to deviate from the desired signal within a certain
threshold. This is precisely why adaptive filters have superior perfor-
mance to that of conventional low pass filters.

This filter is ideal for magnetic resonance experiments because
one usually sacrifices a smaller time constant for the observation of
noisier signals. As a result, each individual spectrum will contain
more noise and will require the need for longer signal averaging
to obtain a reasonable SNR. The filtered output scans are then aver-
aged separately. The underlying idea for this action is that because
the noise of the filtered scans is reduced, the noise in the filtered
average will be reduced faster than that of the noise in the conven-
tional average.

In conventional signal averaging, assuming the noise has a
Gaussian distribution and is independent and identically distrib-
uted (iid) with variance r2
u, the averaged noise variance r2

uN is re-
duced by a factor of the number of scans N in the average as
given in Eq. (14).

r2
uN ¼

r2
u

N
ð24Þ

The reduction in noise of the ASA can be determined by analyzing
the error that is introduced into the algorithm. For an individual
scan, the error introduced into the system by the filter is the com-
bination of the averaged noise in the conventional average uN(n)
with variance r2

uN and the prediction error of the filter v(n).

eðnÞ ¼ dðnÞ � destðnÞ ¼ ½dðnÞ þ uNðnÞ� � ½dðnÞ þ vðnÞ� ¼ uNðnÞ � vðnÞ
ð25Þ

For ease of analysis, it is assumed that the prediction error is also
Gaussian random variable and has 0 mean and variance r2

v . There-
fore, the variance of the error r2

e for an individual scan is found by
adding the variances of each of the random variables.

r2
e ¼ r2

uN þ r2
t ¼

r2
u

N
þ r2

t ð26Þ

If M filtered scans are averaged, then the reduction in noise variance
achieved by the ASA is simply given in Eq. (17).

r2
eM
¼ r2

u

NM
þ rt

M

2
ð27Þ

where M < N. The reason M scans are averaged and not N is because
we want the conventional average to build up a reasonable desired
response before the filter is applied so a better prediction can be
achieved. N is not that much greater than M so they are approximately
equal when considering longer averages. Therefore, as N and M get
larger, the faster the first term in (17) dies away which implies that
the dominating source of noise will eventually be due only to the pre-
diction error of the filter. This is desirable because it is this first term
that actually slightly biases the ASA. By allowing the conventional
average to build a reasonable desired signal before the filter is ap-
plied, the noise bias is gradually removed. It turns out that not many
scans are required to be averaged for this bias to be removed.

Another concern one might have would be whether or not the
adaptive filter would have any affect on the g value. It turns out
that this technique does not introduce any significant shift in the
spectrum, which would be expressed in a shift in the g value.
The reason for this is because an FIR filter of small length (<256
weights) is used in our implementation. FIR filters have a linear
phase and introduce a small constant delay at the output of the fil-
ter. This delay is actually filter length dependent so that longer de-
lays are encountered for filters of longer length. Though, this delay
for longer length filters is not significant enough to introduce any
significant error in the g value measurement. This was confirmed
when a relatively long filter (1024 weights) was used in the algo-
rithm to find the g value of a certain SiC MOSFET. The g values from
the unconventional average differed from the filtered average by
about 0.000001. In our experiments, we usually represent the g va-
lue with a much larger source of error of ±0.0003. Therefore, the
small error introduced by the filter is negligible.

As discussed earlier, the prediction of the desired signal is al-
ways better than or equal to that of the noisy input because the fil-
ter is optimized to minimize the sum of squared errors. Therefore,
the reduction in noise of the filtered average will always be better
than that of the original average over time, despite being averaged
with fewer scans. As a result, one can see why this averaging pro-
cess is expedited; averaging a random variable with a small vari-
ance (prediction error) will converge much faster than averaging
a random variable with larger variance (noise error).

The EWRLS ASA was implemented in Labview version 8.2 soft-
ware and applied to EDMR for 4H SiC MOSFETs. The spectrometer
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C.J. Cochrane, P.M. Lenahan / Journal of Magnetic Resonance 195 (2008) 17–22 21
settings used in the scan were purposely chosen to reduce the SNR
of the signal so as to better visually observe the improvement of
the filtered signal. The variables that were used in the EWRLS algo-
rithm were k = 0.98, d = 1, p = 32 weights, and the filter was applied
after averaging 15 scans. The reason 15 scans were averaged before
the filter was applied was so that the filter had a better represented
spectrum (moderate SNR as opposed to low SNR) upon which to
base its prediction. Also, 15 scans in the conventional average were
enough to remove the noise bias which was discussed previously.

Fig. 4 compares the performance of the filter of an individual
scan. With the signal amplitude normalize to 1, the noise variance
was calculated to be r2

u ¼ 0:0315 in the unfiltered trace and was
calculated to be r2

u ¼ 0:00278 for the filtered trace. (These values
were calculated by taking the variance of the difference between
the individual scan and the final average.) As a result, an 11.3 times
reduction in noise variance was observed in a single scan which
corresponds to a 11.3 times reduction in time as well. Fig. 5 com-
pares the average of 100 unfiltered scans and the average of 85 fil-
tered scans. Note that the filtered average is not as noisy as the
conventional average and has almost converged to its final value.
Fig. 6 compares the average of 1000 unfiltered scans and the aver-
age of 985 filtered scans. Note that significant noise is present in
the unfiltered average whereas the noise is not visually observable
in the filtered average. Also, the variance of the noise that remains
in the conventional average after 1000 scans is approximately
equal to the noise variance in the filtered average after about 90
or so scans as illustrated in Fig. 7. As a result, the reduction in a
Fig. 4. Individual unfiltered scan (a) compared to the individual filtered scan (b).

Fig. 5. Average of 100 unfiltered scans (a) compared to the average of 85 filtered
scans (b).
noise variance by factor of 11.3 in an individual scan is equivalent
to a reduction in time by the same amount as illustrated in Fig. 6. In
this particular experiment, the conventional average (1000 scans at
1 min each) took 1000 min to complete. The filtered average con-
verged in approximately 90 scans which amounts to 910 less min-
utes of scanning time to obtain a comparable SNR. This is a very
significant consideration, especially for measurements that require
days of signal averaging. A signal that would usually require 10
days of signal averaging would be reduced to averaging for less
than 1 day (assuming similar filter performance).

A concern one might have would be when to apply the filter. It
turns out, that even if the SNR is less than 1, the filtered average
will converge to the same result as the original average. This is
ok to do so long as a sufficient number of scans are averaged first
before the filter is applied to remove much of the noise bias, as dis-
cussed earlier. We applied the ASA to a 4H SiC bipolar junction
transistor which has an EDMR spectrum which has weak sidepeaks
due to hyperfine interactions with nearby 13C and 29Si. This hyper-
fine structure is unobservable until at least 20 or so scans in the
average. The filter was applied after 15 scans (before any of the
weak hyperfine structure was observed) and our results show that
the unfiltered average and the filtered average are identical after
250 scans. The only difference is that the filtered average con-
verged in many fewer scans.

The EWRLS ASA is an extremely useful and efficient tool for
EDMR. It is capable of reducing the noise variance by a factor of
11.3 in a single trace and as expected, the average of the filtered
scans was shown to converge by a similar factor. This filter is even
Fig. 7. SNR ratio the (a) filtered average and the (b) conventional average.
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successful when the SNR of an EDMR scan is less than 1. With such
great reduction in noise, the ASA effectively expedites the time of
averaging. This tool not only has great potential in EDMR, but
would also be beneficial for ESR in general. This approach may
be very useful in quantum computing experiments where exten-
sive signal averaging may be required for single spin detection.
This filter can also be applied to any field where extremely high
sensitive and relatively short acquisition times are required. Fur-
thermore, it should be noted that this filter can also be applied
to any field where signal averaging is utilized.
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